Изучено влияние процесса сушки на свойства керамических фильтрующих элементов для очистки промышленных высокотемпературных газов. Фильтрующие элементы были основаны на алюмосиликатном волокне, изготовленном методом вакуумной фильтрации с последующим формованием и механической обработкой заготовки, ее обработкой коллоидным связующим оксидом кремния и сушкой с применением различных процессов.
Для изучения связанной миграции связующего и ее влияния на свойства фильтра были использованы:
Диффузионное перераспределение связующего через толщину стенки фильтрующего элемента уменьшается в серии CD→FCD→MWD с соответствующим улучшением структурной однородности и механической прочности фильтров.
Прочность на растяжение образцов, обезвоженных с помощью конвективной сушки, замораживания с последующей конвективной сушкой и микроволновой сушкой, которые затем подвергаются термической обработке при 1000 °C (предполагаемая максимальная рабочая температура), составляет 0,35 МПа, 0,57 МПа и 0,48 МПа соответственно. Перепад давления, измеренный при удельном расходе воздуха 100 м3/м2 составляет соответственно 700Па, 490Па и 410Па.
The influence of drying process on the properties of ceramic filter elements for industrial high-temperature gases purification was studied. Filter elements were based on aluminosilicate fiber manufactured via vacuum filtration with the following molding and machining of the workpiece, it's treatment with a colloidal silicon oxide sol binder, and drying with the employment of various processes. Convective drying (CD), microwave drying (MWD) and filter element freezing followed by convective drying (FCD) processes were employed to study the related binder migration and its effect on filter properties. Diffusional redistribution of the binder through the thickness of the filter element's wall decreases in the series CD→FCD→MWD with the accordingly observed improvement of the structural uniformity and mechanical strength of the filters. The tensile strength of samples dehydrated via convective drying, freezing followed by convective drying and microwave drying, all of which then heat-treated at 1000 °C (the assumed maximum operating temperature), is 0.35 MPa, 0.57 MPa and 0.48 MPa, respectively. The pressure drop measured at the specific air flow of 100 m3/m2 is respectively 700Pa, 490Pa and 410Pa.